|
@@ -7,7 +7,9 @@ import itertools
|
|
|
import operator
|
|
|
from typing import Iterable, NamedTuple
|
|
|
|
|
|
+import claripy
|
|
|
import itanium_demangler as demangler
|
|
|
+import msgspec
|
|
|
from cle.backends.symbol import Symbol
|
|
|
from cle.memory import Clemory
|
|
|
|
|
@@ -79,9 +81,40 @@ VTable = list[Symbol]
|
|
|
|
|
|
# some virtual functions cannot be disambiguated outright, or need to check the resolved
|
|
|
# state of the rest of the table - for the former we have to disambiguate them out-of-band
|
|
|
-#
|
|
|
-# ideally we would do some linear constraint on ordering, but for now we just spec the offset
|
|
|
-VTableConstraintDict = dict[str, dict[str, int]]
|
|
|
+class BaseConstraint(msgspec.Struct, tag_field="constraint"):
|
|
|
+ def apply(self, solver: claripy.Solver, symtable: dict[str, claripy.ast.bv.BV]) -> None:
|
|
|
+ raise NotImplementedError("BaseConstraint.apply is abstract")
|
|
|
+
|
|
|
+
|
|
|
+class SoftOrderConstraint(BaseConstraint, tag="soft"):
|
|
|
+ # a constraint where symbols must be in ascending order but gaps may be present
|
|
|
+ symbols: list[str]
|
|
|
+
|
|
|
+ def apply(self, solver: claripy.Solver, symtable: dict[str, claripy.ast.bv.BV]) -> None:
|
|
|
+ if not all(x in symtable for x in self.symbols):
|
|
|
+ return
|
|
|
+ solver.add(
|
|
|
+ claripy.And(
|
|
|
+ *(symtable[b] > symtable[a] for a, b in itertools.pairwise(self.symbols))
|
|
|
+ )
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+class ConsecutiveOrderConstraint(BaseConstraint, tag="consecutive"):
|
|
|
+ # a constraint where symbols must have offsets one higher than the previous
|
|
|
+ symbols: list[str]
|
|
|
+
|
|
|
+ def apply(self, solver: claripy.Solver, symtable: dict[str, claripy.ast.bv.BV]) -> None:
|
|
|
+ if not all(x in symtable for x in self.symbols):
|
|
|
+ return
|
|
|
+ solver.add(
|
|
|
+ claripy.And(
|
|
|
+ *(symtable[b] == symtable[a] + 1 for a, b in itertools.pairwise(self.symbols))
|
|
|
+ )
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+VTableConstraintDict = dict[str, list[SoftOrderConstraint | ConsecutiveOrderConstraint]]
|
|
|
|
|
|
|
|
|
class VtableDisambiguator(angr.Analysis):
|
|
@@ -321,18 +354,6 @@ class VtableDisambiguator(angr.Analysis):
|
|
|
|
|
|
return vt_out
|
|
|
|
|
|
- def get_constrained_vfn(
|
|
|
- self, vt: Symbol, vfnidx: int, candidate_fnsyms: set[Symbol]
|
|
|
- ) -> Symbol | None:
|
|
|
- for psym in self.superclass_map[vt]:
|
|
|
- if psym.name not in self.vtable_constraint:
|
|
|
- continue
|
|
|
- vt_const = self.vtable_constraint[psym.name]
|
|
|
- for fnsym in candidate_fnsyms:
|
|
|
- if fnsym.name in vt_const and vt_const[fnsym.name] == vfnidx:
|
|
|
- return fnsym
|
|
|
- return None
|
|
|
-
|
|
|
def get_vfn_from_parent(self, vt: Symbol, vtidx: int) -> int:
|
|
|
# HACK: some virtual destructors got optimized out and are represented by nullptrs
|
|
|
# in that case we try to match functions from the parent
|
|
@@ -369,11 +390,6 @@ class VtableDisambiguator(angr.Analysis):
|
|
|
fnsyms = set(self.syms_by_addr.get(vptr) or set())
|
|
|
|
|
|
if len(fnsyms) > 1:
|
|
|
- constrained_sym = self.get_constrained_vfn(vt, n, fnsyms)
|
|
|
- if constrained_sym:
|
|
|
- function_list.append(VTableFunction(table_index, {constrained_sym}))
|
|
|
- continue
|
|
|
-
|
|
|
# function in vtable is referenced by multiple names; perform disambiguation
|
|
|
matched_overload = self.resolve_ambiguous_vfn(
|
|
|
n, fnsyms, self.get_possible_vtable_set_candidates(vt, n)
|
|
@@ -405,6 +421,50 @@ class VtableDisambiguator(angr.Analysis):
|
|
|
)
|
|
|
vfn.possible_syms -= disambiguated_functions
|
|
|
|
|
|
+ if self.vtable_constraint:
|
|
|
+ solver = claripy.Solver()
|
|
|
+ solver_asts = {}
|
|
|
+ positional_constraints = collections.defaultdict(set)
|
|
|
+ for n, vfn in enumerate(function_list):
|
|
|
+ if len(vfn.possible_syms) == 1:
|
|
|
+ sym = set(vfn.possible_syms).pop()
|
|
|
+ # symbolic names for constant values - we don't use these ourselves; they're here
|
|
|
+ # so user-defined tooling can specify them relative to variables as needed
|
|
|
+ solver_asts[sym.name] = claripy.BVV(n, 10)
|
|
|
+ continue
|
|
|
+
|
|
|
+ for sym in vfn.possible_syms:
|
|
|
+ # constrain variable values to those defined as ambiguous
|
|
|
+ positional_constraints[sym].add(n)
|
|
|
+
|
|
|
+ for sym, positions in positional_constraints.items():
|
|
|
+ if sym.name not in solver_asts:
|
|
|
+ solver_asts[sym.name] = claripy.BVS(sym.name, 10)
|
|
|
+ solver.add(claripy.Or(*(solver_asts[sym.name] == n for n in positions)))
|
|
|
+
|
|
|
+ for pvt in self.superclass_map[vt]:
|
|
|
+ constraints = self.vtable_constraint.get(pvt.name)
|
|
|
+ if not constraints:
|
|
|
+ continue
|
|
|
+ for constraint in constraints:
|
|
|
+ constraint.apply(solver, solver_asts)
|
|
|
+
|
|
|
+ solutions = solver.batch_eval(solver_asts.values(), 2)
|
|
|
+ if len(solutions) == 1:
|
|
|
+ unique_solution = {v: k for k, v in zip(solver_asts.keys(), solutions[0])}
|
|
|
+ for n, vfn in enumerate(function_list):
|
|
|
+ if (
|
|
|
+ len(vfn.possible_syms) > 1
|
|
|
+ and unique_solution
|
|
|
+ and n in unique_solution.keys()
|
|
|
+ ):
|
|
|
+ resolved_syms = {
|
|
|
+ sym
|
|
|
+ for sym in iter(vfn.possible_syms)
|
|
|
+ if sym.name == unique_solution[n]
|
|
|
+ }
|
|
|
+ vfn.possible_syms = resolved_syms
|
|
|
+
|
|
|
# final uniqueness pass
|
|
|
# raise exception if we still have multiple possible symbols for a given position
|
|
|
for n, vfn in enumerate(function_list):
|